980 resultados para UV irradiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titania (TiO2) nano-photocatalysts, with different phases, prepared using a modified sol-gel process were employed in the degradation of rhodamine at 10 mg L-1 concentration. The degradation efficiency of these nano-photocatalysts was compared to that of commercial Degussa P25 titania. It was found that the nanocatalysts calcined at 450 degrees C and the Degussa P25 titania had similar photoreactivity profiles. The commercial Degussa P25 nanocatalysts had an overall high apparent rate constant of (K-app) of 0.023 min(-1). The other nanocatalyst had the following rate constants: 0.017, 0.0089, 0.003 and 0.0024 min(-1) for 450, 500, 550 and 600 degrees C calcined catalysts, respectively. This could be attributed to the phase of the titania as the anatase phase is highly photoactive than the other phases. Furthermore, characterisation by differential scanning calorimetry showed the transformation of titania from amorphous to anatase and finally to rutile phase. SEM and TEM characterisations were used to study the surface morphology and internal structure of the nanoparticles. BET results show that as the temperature of calcinations was raised, the surface area reduced marginally. X-ray diffraction was used to confirm the different phases of titania. This study has led to a conclusion that the anatase phase of the titania is the most photoactive nanocatalyst. It also had the highest apparent rate constant of 0.017 min(-1), which is similar to that of the commercial titania.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural humic lake water and aqueous solutions of humic substances were treated with ultraviolet (UV) radiation (λ = 254 nm). The effects on the dissolved organic carbon content (DOC) and the absorbance at 254 nm (Abs254) and 460 nm (Abs460) were monitored and the identity and concentrations of gas chromatographable organic degradation products were determined. The DOC content and the (Abs254) of the humic solutions decreased continuously with increasing UV-dose. Several aromatic and aliphatic degradation products were identified and roughly quantified The concentrations of aromatic hydroxy carboxylic acids and hydroxy aldehydes increased when relatively low UV-doses were used, but declined following further irradiation. The concentrations of aliphatic dibasic acids increased over the full range of UV-doses

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A functionalized. cyclic carbonate monomer containing a cinnamate moiety, 5-methyl-5-cinnamoyloxymethyl-1,3-dioxan-2-one (MC), was prepared for the first time with 1,1,1-tri(hydroxymethyl) ethane as a starting material. Subsequent polymerization of the new cyclic carbonate and its copolymerization with L-lactide (LA) were successfully performed with diethyl zinc (ZnEt2) as initiator/catalyst. NMR was used for microstructure identification of the obtained monomer and copolymers. Differential scanning calorimetry (DSC) was used to characterize the functionalized poly(ester-carbonate). The results indicated that the copolymers displayed a single glass transition temperature (T-g) and the T, decreased with increasing carbonate content and followed the Fox equation, indicative of a random microstructure of the copolymer. The photo-crosslinking of the cinnamate-carrying copolymer was also demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of water and deuterium oxide on TiO2 surfaces was investigated in the dark as well as under UV(A) irradiation using in situ ATR-FTIR spectroscopy under oxygen and oxygen free conditions. Adsorption of H2O-D2O mixtures revealed an isotopic exchange reaction occurring onto the surface of TiO2 in the dark. Under UV(A) irradiation, the amount of both OH and OD groups was found to be increased by the presence of molecular oxygen. Furthermore, the photocatalytic formation of hydroperoxide under oxygenated condition has been recorded utilizing Attenuated Total Reflection Fourier Transformed Infrared (ATR-FTIR) spectroscopy which appeared as new band at 3483 cm-1. Different possible mechanisms are discussed in terms of the source of hydroxyl groups formed and/or hydration water on the TiO2 surface for the photocatalytic reaction and photoinduced hydrophilicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has previously been shown that irradiation with UV light increases the vitamin D content of certain mushroom species, but the effect on other nutrients is unknown, and is difficult to assess due to the complexity of the sample matrix. Here, an offline reversed phase × reversed phase two-dimensional liquid chromatography methodology was developed and applied to Agaricus bisporus mushrooms in order to demonstrate the potential of the technique and assess the effect of UV irradiation on the mushroom’s metabolic profile. The method allowed the detection of 158 peaks in a single analytical run. A total of 51 compounds including sugars, amino acids, organic and fatty acids and phenolic compounds were identified using certified reference standards. After irradiation of the mushrooms with UV for 30 s the number of peaks detected decreased from 158 to 150; 47 compounds increased in concentration while 72 substances decreased. This is the first time that two-dimensional liquid chromatography has been carried out for the metabolomic analysis of mushrooms. The data provide an overview of the gain/loss of nutritional value of the mushrooms following UV irradiation and demonstrate that the increased peak capacity and separation space of two-dimensional liquid chromatography has great potential in metabolomics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Films made from a blend of poly(epsilon-caprolactone) and poly(vinyl chloride) (PCL/PVC) retained high crystallinity in a segregated PCL phase. Structural and morphological changes produced when the films were exposed to high potency ultraviolet (UV) irradiation for 10 h were measured by UV-Vis spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). They were different to those observed with homopolymer PCL and PVC films treated under the same conditions. The FTIR spectra of the PCL/PVC blend suggest that blending decreased the susceptibility of the PCL to crystallize when irradiated. Similarly, although scanning electron micrographs of PCL showed evidence of growth of crystalline domains, particularly after UV irradiation, the images of PCL/PVC were fairly featureless. It is apparent that the degradation behavior is strongly influenced by the interaction of the two polymers in the amorphous phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by (13)C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching upto 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation of CO(2), CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a period of increasing concern about food safety, food poisoning outbreaks where unpasterurized apple cider or apple juice was found contaminated with Escherichia coli 0157:H7 reinforces the need for using the best technologies in apple cider production. Most apple cider is sold as an unpasteurized raw product. Because of their acidity, it was believed that juice products do not usually contain microorganisms such as E. coli 0157:H7, Salmonella, and Crytosporidium. Yet all of these foodborne pathogens are capable of being transmitted in unpasteurized juices. It is known that these pathogens can survive for several weeks in a variety of acidic juices. Although heat pasteurization is probably the best method to eliminate these pathogens, it is not the most desirable method as it changes sensory properties and also is very costly for small to mid-sized apple cider processors. Pasteurization of apple cider with Ultraviolet Irradiation (UV) is a potential alternative to heat pasteurization. Germicidal W irradiation is effective in inactivating microorganisms without producing undesirable by-products and changing sensory properties. Unpasteurized raw apple cider from a small local processor was purchased for this study. The effects of physical parameters, exposure time and dosage on the W treatment efficacy were examined as well as the effects of the UV light on apple cider quality. W light with principal energy at a wavelength of 254.7 nm, was effective in reducing bacteria (E .coli, ATCC 25922) inoculated apple cider. The W dosage absorbed by the apple cider was mathematically calculated. A radiation dose of 8,777 μW-s/cm2 reduced bacteria an average of 2.20 logs and in multiple passes, the FDA mandated 5-log reduction was achieved. Sensory analysis showed there was no significant difference between the W treated and non-treated cider. Experiments with W treated apple cider indicated a significant (p < 0.01) extension of product shelf life through inhibition of yeast and mold growth. The extension of the researched performed is applicable to other fruit juice processing operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposing skin to UVB (280–320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase (Photosomes; Applied Genetics, Freeport, NY), which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosome treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320–400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UV irradiation induces apoptosis (or programmed cell death) in HL-60 promyelocytic leukemia cells within 3 h. UV-induced apoptosis is accompanied by activation of a 36-kDa myelin basic protein kinase (p36 MBP kinase). This kinase is also activated by okadaic acid and retinoic acid-induced apoptosis. Irrespective of the inducing agent, p36 MBP kinase activation is restricted to the subpopulation of cells actually undergoing apoptosis. Activation of p36 MBP kinase occurs in enucleated cytoplasts, indicating no requirement for a nucleus or fragmented DNA in signaling. We also demonstrate the activation of p36 kinase in tumor necrosis factor-alpha- and serum starvation-induced cell death using the human prostatic tumor cell line LNCap and NIH 3T3 fibroblasts, respectively. We postulate that p36 MBP kinase is a common component in diverse signaling pathways leading to apoptosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of UV-C irradiation of the TPS and PCL biocomposites with sisal bleached fibers was investigated. The biocomposite was UV-C irradiated at room temperature under air atmosphere. The structural and morphological changes produced when the films were exposed to UV irradiation for 142 h, were monitored using Scanning Electron Microscopy (SEM), Mechanical Tensile Tests, Differential Scanning Calorimetry (DSC), X-ray diffraction, Thermogravimetric analysis (TGA), and Fourier transform infra-red analysis (FTIR). Addition of 5-10% fibers in composites exhibited improved mechanical and thermal properties attributed to more efficient dispersibility of fiber in the matrix and good compatibility between fibers and the matrix polymer, however, after irradiated, the tensile properties decreased due to chain scission. The samples of irradiated PCL and IFS showed crystallinity increase, whereas the blend and composites showed a decrease in crystallinity. The DSC and X-ray diffraction studies suggested interaction between polymers in the blend via carboxyl groups in thermoplastic starch-PCL and hydroxyl groups in fibers. (C) 2011 Elsevier Ltd. All rights reserved.